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The accuracy and convergence of the discrete geometric method (DGM) in terms of scalar potential depend on the quality of
spatial meshes. To improve performance of the DGM based on existing meshes, the concept of weighted triangulations is reviewed
and introduced to optimally transport the circumcenter of element to a well-centered position which results in the modified formulas
of Hodge operation. The dual DGMs based on weighted triangulations are reformulated over dual meshes. They both help to reduce
the spatial discretization errors and accelerate electromagnetic field analysis to extract circuit parameters. The electrostatic field and
capacitance extraction examples are studied. The numerical results demonstrate that the accuracy and stability of the DGM are
improved.

Index Terms—Discrete Hodge operator, discrete geometric method, parasitic capacitance extraction, weighted triangulations.

I. INTRODUCTION

RECENTLY, the discrete geometric method (DGM) has
attracted much attention in electromagnetic field analysis

and in the applications such as the capacitance extraction
in integrated circuits (IC) [1]. For such type of method, the
accuracy, convergence and stability depend on the shape and
size of the space discretization, so that the mesh generation
algorithm is critical [2]. However, in the case of complicate IC
structures, there is yet unlikely a versatile algorithm to generate
perfect meshes. Improving mesh quality requires much effort
and time cost.

The DGM has advantages due to its simple implementa-
tion and the energy complementarity when the dual DGM
established on the dual meshes. In addition, both the dual
formulations work with the scalar potential [1]. The interlocked
dual meshes are usually based on barycenter or circumcenter.
The circumcentric duals are preferred for the orthogonality
in nature. However, in the case of bad shaped elements,
the circumcenter may dropped out of element and make the
matrix ill-conditioned. On the other hand, the barycentric duals
guarantee that the vertices of the dual mesh lies inside the
corresponding primal elements. But the fact of losing the
orthogonality brings the discretization errors. To alleviate these
issues, a family of well-shaped primal-dual pairs of meshes,
i.e., weighted triangulations, or weighted dual, is introduced
for fast and accurate computations in [3]. In this paper, this
method is reviewed, implemented, and applied for capacitance
extraction of IC interconnects. Its energy complementary and
duality are studied.

II. DISCRETE GEOMETRIC METHOD

A. Dual Formulations on Dual Meshes

Let MP and MD be the two interrelated primal and dual
meshes, as shown in Fig. 1, where MP is usually a triangular
mesh and MD is formed through Hodge mapping. In the
framework of discrete geometry, the field equations are written
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Fig. 1. Primal meshes MP with triangle elements and dual meshes MD in
two dimension. MP -s are colored with black. MD-s of (a) in blue, (b) in
green, and (c) in red are built using circumcenter, barycenter and weighted
circumcenter, respectively. The barycenter is marked with pentacles in blue.
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Fig. 2. Equivalent elementary capacitance contributions along three edges on
the primal mesh (a) and the dual mesh (b); the circumcenter Cijk (c) and the
weighted circumcenter Wijk (d) are used to evaluate dual relations.

algebraically on them. For an electrostatic problem, curl e = 0
and divd = ρ. Attaching e to the edges of MP and d to the
edges (in two dimension) or the facets (in three dimension) of
MD, or vice versa, and using the Hodge discrete version of
the constitutive matrices MP

ε and MD
ε , we obtain the primal

and dual sets of equations as [1]

GTMP
ε Gv̄P = ρ̄D , and DMD

ε DT v̄D = ρ̄P ,

where G and D are incident matrices, and the scalar potential
v̄P and v̄D are nodal degrees of freedom on MP and MD,
respectively.

B. Weighted Triangulations
In the concept of weighted triangulations, the position of

the original circumcenter (Fig. 1a) is shifted to a weighted
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circumcenter (Fig. 1c). The latter is closer to barycenter but the
dual meshes are kept mutually orthogonal. Then the geometric
dimensions used for calculating constitutive matrices needs to
be modified.

The primal elementary capacitance on edge ij based on the
primal formulation using circumcenter within primal mesh, as
shown in Fig. 2a and Fig. 2c is given by

Ce
ij = εQijCijk

/
ViVj , (1)

within weighted triangulations in Fig. 2d it is replaced by

Ce
ij = εWijkPij

/
ViVj , (2)

where by denoting ws as the weight value on vertex s, and I, J,
and K as inner angles located at vertex i, j, and k respectively,
the dimension of edge on primal mesh and on dual mesh are
given respectively as

ViPij =
ViVj

2
+
wi − wj

2ViVj

, PijVj =
ViVj

2
+
wj − wi

2ViVj

, and

WijkPij =
ViVj

2
cotK+

(wj − wk) cot I + (wi − wk) cot J

2ViVj

.

To perform weighted triangulation without changing any
vertex position, the optimal weights imposed on all vertexes
that guarantee the minimization of errors of global energy are
given by

w∗
i =

∑
tijk∈Ω(i)(wj cotK+wk cotJ+2tijk(ct−bt)·ni)∑

tijk∈Ω(i)
(ViVj)

2

2tijk

, (3)

where ni is the unitary exterior normal vector on edge jk
opposite vertex i. ct and bt are, respectively, the circumcenter
and the barycenter of the triangle element ijk, whose area is
tijk [3][4].
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Geometric Dimension and Discrete Space

Fig. 3. Geometric model of a cylindrical capacitor example and discrete mesh
space, where the relative permittivity of the dielectric between the plates is
εr = 3.70. 0-volt and 1-volt potentials are imposed on the two plates; The
unit of dimension is µm.

III. EXAMPLE AND DISCUSSION

To validate the dual DGMs using weighted triangulations
and to investigate their energy complementary characteristics,
an electrostatic problem of a cylindrical capacitor as shown in
Fig. 3, for which the analytical solution is available, is studied.
The computation domain is meshed into triangle elements,
and then the weighted circumcenters are determined using
Eq. 3 to build the dual mesh. It can be noticed that the
weighted circumcenters in Fig. 4 are closer to the barycenters.
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Fig. 4. Dual meshes generated through triangulation (a) and weighted
triangulation (b). The region shown here corresponds to the region with bold
frame in Fig. 3.
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Fig. 5. Energy bounds for dual DGMs using circumcenter and weighted
circumcenter, and energy compared with analytic solution.

The numerical solutions given by dual DGMs over traditional
meshes and weighted meshes are compared with the analytical
solution in Fig. 5.

According to Fig. 3, both the energy bounds and the con-
sistency, i.e., the convergence along with the mesh refinement,
are clearly observed. For the primal DGM and the dual DGM,
the weight triangulation achieves better accuracy, because it
reduces the space discretization error. It should be also noticed
that the average curves of dual DGMs on both original meshes
and weighted meshes almost coincide. This shows that the dual
DGMs can collectively reduce the space discretization error.

IV. CONCLUSION

The dual DGMs work on the meshes processed by weighted
triangulations, which are proven to reduce discretization error
effectively. The energy complementary is observed. Three-
dimensional results will be provided in the full paper. Since
the dual methods and the weighted triangulations are both
aimed at the reduction of discretization errors, the cost for
weighted triangulations should be evaluated and compared with
the paired DGMs.
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